Janos pach and rom pinchasi ( see [ 61 ] ) proved that any set of n points in strictly convex position in the plane has at most [ 2 ( n - 1 ) / 3j triples that induce unit triangles ( equilateral triangles of side length one ) , and any set of n points in convex position in the plane has at most n - 2 triples that induce unit triangles 平面中任一處于凸位abstract置的二一點(diǎn)集至多有2 。一4個(gè)三元組滿足:每一三元組均導(dǎo)出一個(gè)與t0全等的三角形.定理2 . 2 .給定一等腰直角三角形t0 ,平面中任一處于強(qiáng)凸位置的n一點(diǎn)集至多有二個(gè)三元組滿足:每一三元組均導(dǎo)出一個(gè)與幾全等的三煮形